CPE 470 - UVM

UVM

Glossary
UVM UVM: Universal Verification Methodology

e UVM is a way of designing reusable, abstracted tests
o Industry standard for complex designs
O Built on System Verilog
e A UVM testbench is comprised of components
o Components can generate signals, interact with DUT, pass data around, etc.
e UVMiis highly object oriented
o Top-level abstractions encapsulate many components
o Anything that is a component inherits from component class
e Breaks testbench down into discrete phases

e PyUVM is a python implementation of the same classes
O Integrates with CocoTB
o Provides further abstraction and teaches industry-style verification

Topology - DUT

Glossary

VIP: Verification IP

BFM: Bus Functional Model, verification model of interfaces

used to interact with DUT

e Abstracted UVM testbench connects to DUT through VIP
o BFM abstracts process of writing bus signals
o Allows easier read/write, error injection, changes of configuration
e UVM testbench doesn’t want to directly drive individual bus signals
o VIP acts as overall interface, BFM directly drives signals

Testbench ’

System\erilog
v

Verification |IP

Testbench
Interface

endorsed

Configuration
Manager

Protocol Layer

Errors Injector

vtéty 14

BFM

v

DUT

Credit: Accellera

Glossary

Topology _ Testbench TLM: Transaction Level Modeling

e Within the UVM context, elements

need to talk to each other A |

o Strictly outside of DUT scope D =thread
e Use TLM to model test flow as an _
. : = port
input/output transaction

e Defines port based communication initiator O = export
for component interaction
o Analysis Ports exposed by
producers to other components
o Exports attached by consumers
to receive data

 congumer | —p =dataflow

initiator initiator
produycer ‘

Credit: Siemens

Glossary

Stimulus: specific input conditions to a DUT
Sequencer

Example Sequences for an ALU
Sequencer generates test patterns (sequences)

o Sequences are groups of stimuli
o Randomized data sets

o SpECifiC Edge Cases class RandomSeq(uvm_sequence):
. async def body(self):
Sequencer introduces test data to rest of system For op in 1ist(0ps):

o Sequence uses start/finish item to tell sequencer

cmd_tr = AluSeqItem("cmd_tr", None, None,
when ready or done executing

await self.start _item(cmd_tr)
cmd_tr.randomize_operands()

await self.finish_item(cmd_tr)

Agent
class MaxSeq(uvm_sequence):

— i o
async def body(self):
Monitor for op in list(Ops):
|| seq_item cmd_tr = AluSeqItem("cmd_tr", Oxff, Oxff,

self.start_item(cmd_tr)
wait self.finish_item(cmd_tr)

Sequence

www.vlsiverify.com

Driver

e Driver takes patterns from

sequencer and introduces to DUT
Interacts with BFM

Sends DUT inputs through BFM
Reads DUT outputs through BFM

Writes outputs to Analysis Port

Sequencer Driver

run_phase task

class Driver(uvm_driver):
def build phase(self):

self.ap = uvm_analysis_port("ap"”, self)

def start_of_simulation_phase(self):
self.bfm = TinyAluBfm()

async def launch_tb(self):
await self.bfm.reset()
self.bfm.start_tasks()

async def run_phase(self):
await self.launch_tb()

while True:

cmd = await self.seq_item port.get _next_item()
await self.bfm.send op(cmd.A, cmd.B, cmd.op)
result = await self.bfm.get result()
self.ap.write(result)

cmd.result = result

self.seq_item_port.item_done()

Monitor

e Listens on the BFM for transactions

e Reports data to Analysis Port
o Generally read-only, simply reporting back

class Monitor(uvm_component):

Top

def __init__ (self, name, parent, method_name):

super().__init__(name, parent)
self.method_name = method_name

f build_phase(self):
self.ap = uvm_analysis_port("ap", self)
self.bfm = TinyAluBfm()
self.get_method = getattr(self.bfm, self.method_name)

mon_ap_after <> O mon_ap_before

Monitor| | Monitor| |Sequencer
After Before seqitem_export
async def run_phase(self): [~
l—lseq_item_port

whi e True. I DUT |(‘ """""""""" Interface 1 Driver |
datum = await self.get method() N Vv

self.logger.debug(f"MONITORED {datum}")

self.ap.write(datum

Scoreboard

Decides whether tests pass or fail
Connects to Monitors to obtain results
Compares results to Reference Model

(@)
(@)

Reference Model

Analysis
export
\\
.
)

._

e

In_txn

in_fifo II

]
exp_txn!

wall |11

Out-of-order
comparison

il |

,I
act_txn -

|1

el 11

Out-of-order comparator

Out-of-order scoreboard

www.vlsiverify.com

Analysis
export

II out_fifo —o*

top module

uvm_test

uvm_env

uvm_agent

uvm_scoreboard

uvm_driver

interface

Scoreboard (PyUVM)

def build phase(self):
self.cmd fifo = uvm tlm analysis fifo("cmd fifo", self)

Create FIFOs

for commands
self.result fifo = uvm tlm analysis fifo("result fifo", self) and results

self.cmd get port = uvm _get port(“"cmd get port™, self) Set up FIFO
self.result get port = uvm get port(“"result get port"”, self) ports and
self.cmd_export = self.cmd fifo.analysis export exports

self.result export = self.result fifo.analysis export

Test ALU operations against Reference Model
(A, B, op numb) = cmd

op = Ops(op_numb)

predicted result = alu prediction(A, B, op)

dE connect phase(ell): if predicted result == actual result:
self.logger.info(f"PASSED: Ox{A:02x} {op.name} 0x{B:02x} ="

" 0x{actual result:04x}")

self.cmd _get port.connect(self.cmd fifo.get export)
self.result get port.connect(self.result fifo.get export)

e Connect FIFOs to monitor ports else:
self.logger.error(f"FAILED: 0x{A:02x} {op.name} Ox{B:02x} "

f"= 0x{actual result:04x} "
f"expected Ox{predicted result:04x}")

Cove ra ge class Coverage(uvm_subscriber):

def end of elaboration phase(self):

Scoreboard told us that our tests pass or fail self.cvg = set()
© How do we know if our tests are really
covering all the cases we care about?
o If our tests don’t fully cover our use cases,
passing them doesn’t prove success

def write(self, cmd):
(_) > OP) = cmd
self.cvg.add(op)

report phase(self):
try:

disable errors = ConfigDB().get(

Coverage makes sure our tests tested D ha s TDISAUIE CINERAGE EREORSS)
. except UVMConfigItemNotFound:
everything they were supposed to dienblelorrane Thoq
o ALU example: coverage makes sure all if not disable errors:
Opcodes were tested if len(set(Ops) - self.cvg) > 0O:
. self.logger.error
Several KlndS Of Coverage f"Fiictional iover‘age error. Missed: {set(Ops)-self.cvg}")
o Functional Coverage: was every use case Sert Eilse
tested? ol
] User Defined Functionality self.logger.info("Covered all operations")

assert True

o Code Coverage: was every line of RTL
code reached and tested?
[] Automatic

Hierarchy

Agent encapsulates Sequencer, Driver, Monitor

O

(@)
(@)
(@)

Primary components that interact with DUT
Sequencer decides what to test

Driver executes the test

Monitor views the result

Environment contains Agent and Scoreboard

O

Semi-Configurable top level that can be
reused across different tests

Test contains an environment

o
o

One test is NOT reusable, should be specific
Implements a specific environment

top module

uvm_test

uvm_env

uvm_agent

uvm_scoreboard

uvm_driver

interface

System Verilog TestBench as we know it..

Data
Sequencer

Driver

 ocepaly

R I TR

Credit: ChipVerify

UVM Phases

build ..
Build ¢) e Test Benches are often made up of similar
PR connect 2] :
(end_of_elaboration) steps across projects:

O Have to reset DUT
o Flash with known configuration

(start_of_simulation

(Y (C pre_reset) . .
[| RISC-V core needs instructions
(reset) m Accelerator needs config
(post_reset) o Introduce test inputs
(pre_configure) o Check results of test
(e) o Wait for all tests to propagate through
s,l:;ses (post_configure)
e (pre_main)
(i) e UVM made up of discrete test phases
C_ postmain) where each of these things can happen
(pre_shutdown) o Flexibility for designer to order
(Tiown) necessary operations
o Rigid enough to define where certain
(&) (_ post_shutdown)

Cleanup & check
Phases (

report
& final

steps should happen
§ extract)4—"'/
)
)
]

Build Phase

1. Build
a. Instantiate all components, top-down
2. Connect
a. Connect components using TLM Ports
3. End of Elaboration
a. Fine tune configuration, breakpoints,
print topology

Build Phase all happens before simulation.
Completely setup of the testbench itself

Instantiate & Connect All UVM Components

uvm_test

uvm_env

uvm_scoreboard

uvm_agent

uvm_sequencer

uvm_driver

Run Phase

1. Start Simulation
a. Start simulator
2. Reset
a. Send reset signals to DUT, known states all around
3. Configure
a. Program DUT, flash its memories, load data
4. Main
a. Apply sequences of stimulus to DUT and check results
5. Shutdown
a. Wait for all data to finish propagating, read final status registers

During run phase, each step has a pre- and post- step.

e Adds flexibility on where events should occur

pre_reset

_reset

post_reset

pre_configure

__configure

post_configure

pre_main

__main___

post_main

pre_shutdown

__shutdown _

post_shutdown

Cleanup Phase

1. Extract
a. Retrieve scoreboard and coverage information
2. Check
a. ldentify errors and check for unexpected conditions
3. Report
a. Display or print results, write log files
4. Final

a. User-defined final actions

Scoreboard

& /> Analysis Log Generator

Coverage

Phase Summary

UVM Common Phases

uvm_build_phase
uvm_connect_phase
uvm_end_of_elaboration_phase
uvm_start_of_simulation_phase
uvm_run_phase
uvm_extract_phase

uvm_check_phase

uvm_report_phase
uvm_final_phase

The common phases are the set of function and
task phases that all uvm_components execute
together.

Create and configure of testbench structure
Establish cross-component connections.
Fine-tune the testbench.

Get ready for DUT to be simulated.
Stimulate the DUT.

Extract data from different points of the
verification environment.

Check for any unexpected conditions in the
verification environment.

Report results of the test.

Tie up loose ends.

References

https://vlsiverify.com/uvm/uvm-phases/
https://www.chipverify.com/tutorials/uvm
https://learnuvmverification.com/index.php/2016/04/29/uvm-phasing/
https://asicwhale.github.io/2018/07/09/201807-2018-07-09-uvm-env/
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://mybrushwithasic.blogspot.com/2013/10/dear-readers-first-let-me-wish-you-all.html
https://mybrushwithasic.blogspot.com/2013/10/dear-readers-first-let-me-wish-you-all.html
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/

