
CPE 470 - UVM



UVM

● UVM is a way of designing reusable, abstracted tests
○ Industry standard for complex designs
○ Built on System Verilog

● A UVM testbench is comprised of components
○ Components can generate signals, interact with DUT, pass data around, etc.

● UVM is highly object oriented
○ Top-level abstractions encapsulate many components
○ Anything that is a component inherits from component class

● Breaks testbench down into discrete phases

● PyUVM is a python implementation of the same classes
○ Integrates with CocoTB
○ Provides further abstraction and teaches industry-style verification

Glossary
UVM: Universal Verification Methodology



Topology - DUT

● Abstracted UVM testbench connects to DUT through VIP 
○ BFM abstracts process of writing bus signals
○ Allows easier read/write, error injection, changes of configuration

● UVM testbench doesn’t want to directly drive individual bus signals
○ VIP acts as overall interface, BFM directly drives signals

Glossary
VIP: Verification IP
BFM: Bus Functional Model, verification model of interfaces 
used to interact with DUT

Credit: Accellera



Topology - Testbench

● Within the UVM context, elements 
need to talk to each other
○ Strictly outside of DUT scope

● Use TLM to model test flow as an 
input/output transaction

● Defines port based communication 
for component interaction
○ Analysis Ports exposed by 

producers to other components 
○ Exports attached by consumers 

to receive data

Glossary
TLM: Transaction Level Modeling

Credit: Siemens



Sequencer

● Sequencer generates test patterns (sequences)
○ Sequences are groups of stimuli
○ Randomized data sets
○ Specific Edge Cases

● Sequencer introduces test data to rest of system
○ Sequence uses start/finish item to tell sequencer 

when ready or done executing

Example Sequences for an ALU

Glossary
Stimulus: specific input conditions to a DUT



Driver
● Driver takes patterns from 

sequencer and introduces to DUT
○ Interacts with BFM
○ Sends DUT inputs through BFM
○ Reads DUT outputs through BFM
○ Writes outputs to Analysis Port



Monitor
● Listens on the BFM for transactions
● Reports data to Analysis Port

○ Generally read-only, simply reporting back



Scoreboard
● Decides whether tests pass or fail

○ Connects to Monitors to obtain results
○ Compares results to Reference Model



Scoreboard (PyUVM)
● Create FIFOs 

for commands 
and results

● Set up FIFO 
ports and 
exports

● Connect FIFOs to monitor ports

Test ALU operations against Reference Model



Coverage
● Scoreboard told us that our tests pass or fail

○ How do we know if our tests are really 
covering all the cases we care about?

○ If our tests don’t fully cover our use cases, 
passing them doesn’t prove success

● Coverage makes sure our tests tested 
everything they were supposed to
○ ALU example: coverage makes sure all 

Opcodes were tested
● Several Kinds of Coverage

○ Functional Coverage: was every use case 
tested?
■ User Defined Functionality

○ Code Coverage: was every line of RTL 
code reached and tested?
■ Automatic



Hierarchy

● Agent encapsulates Sequencer, Driver, Monitor 
○ Primary components that interact with DUT
○ Sequencer decides what to test
○ Driver executes the test
○ Monitor views the result

● Environment contains Agent and Scoreboard
○ Semi-Configurable top level that can be 

reused across different tests
● Test contains an environment

○ One test is NOT reusable, should be specific
○ Implements a specific environment



Credit: ChipVerify



UVM Phases
● Test Benches are often made up of similar 

steps across projects: 
○ Have to reset DUT
○ Flash with known configuration

■ RISC-V core needs instructions
■ Accelerator needs config

○ Introduce test inputs
○ Check results of test
○ Wait for all tests to propagate through

● UVM made up of discrete test phases 
where each of these things can happen
○ Flexibility for designer to order 

necessary operations
○ Rigid enough to define where certain 

steps should happen



Build Phase

1. Build
a. Instantiate all components, top-down

2. Connect
a. Connect components using TLM Ports

3. End of Elaboration
a. Fine tune configuration, breakpoints, 

print topology

Build Phase all happens before simulation. 
Completely setup of the testbench itself

Instantiate & Connect All UVM Components



Run Phase
1. Start Simulation

a. Start simulator
2. Reset

a. Send reset signals to DUT, known states all around
3. Configure

a. Program DUT, flash its memories, load data
4. Main

a. Apply sequences of stimulus to DUT and check results
5. Shutdown

a. Wait for all data to finish propagating, read final status registers

During run phase, each step has a pre- and post- step. 

● Adds flexibility on where events should occur



Cleanup Phase
1. Extract

a. Retrieve scoreboard and coverage information
2. Check

a. Identify errors and check for unexpected conditions
3. Report

a. Display or print results, write log files
4. Final

a. User-defined final actions

Scoreboard

Coverage

Log GeneratorAnalysis



Phase Summary



References
● https://vlsiverify.com/uvm/uvm-phases/
● https://www.chipverify.com/tutorials/uvm
● https://learnuvmverification.com/index.php/2016/04/29/uvm-phasing/
● https://asicwhale.github.io/2018/07/09/201807-2018-07-09-uvm-env/
● https://accellera.org/images/downloads/standards/uvm/UVM_Class_Refer

ence_Manual_1.2.pdf
● https://mybrushwithasic.blogspot.com/2013/10/dear-readers-first-let-me-

wish-you-all.html
● https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/
●

https://vlsiverify.com/uvm/uvm-phases/
https://www.chipverify.com/tutorials/uvm
https://learnuvmverification.com/index.php/2016/04/29/uvm-phasing/
https://asicwhale.github.io/2018/07/09/201807-2018-07-09-uvm-env/
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://mybrushwithasic.blogspot.com/2013/10/dear-readers-first-let-me-wish-you-all.html
https://mybrushwithasic.blogspot.com/2013/10/dear-readers-first-let-me-wish-you-all.html
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/

